BASIS
TEMPERATUUR
EXPERIMENTEREN
LICHT
antwoorden
antwoorden
antwoorden
antwoorden
BEWEGING
MENGEN EN SCHEIDEN
ELEKTRICITEIT
GELUID
antwoorden
antwoorden
antwoorden
antwoorden
KRACHT
...
...
...
antwoorden
antwoorden
antwoorden
antwoorden

Hoofdstuk 1
Basisvaardigheden

§1 Natuurkunde
§2 Grootheden en eenheden
§3 Volume en massa
§4 Volume bepalen
§5 Dichtheid
§6 Drijven en zinken



§1     Natuurkunde

In dit hoofdstuk ga je de basisvaardigheden leren waarmee je natuurkunde en scheikunde de rest van het jaar goed kan begrijpen. In deze eerste paragraaf bespreken het verschil tussen natuurkunde, scheikunde en biologie.

Welkom bij de wetenschapsschool. Op deze website ga je leren over de wetenschappen genaamd natuurkunde en scheikunde. Het doel van wetenschap is te begrijpen hoe de wereld werkt. Natuurkunde en scheikunde zijn echter niet de enige wetenschappen. Naast de natuurkunde en de scheikunde bestaat o.a. ook de biologie. In de rest van deze paragraaf bespreken we de verschillen.

De scheikunde gaat over stoffen. In dit vak bestuderen we de eigenschappen van deze stoffen en onderzoeken we waar deze stoffen uit opgebouwd zijn. In sommige omstandigheden veranderen stoffen in compleet andere stoffen. Als dit gebeurt, spreken we van een chemische reactie. Tijdens een chemische reactie kan er van alles gebeuren. Stoffen kunnen van kleur veranderen, licht geven of zelfs ontploffen. Hieronder zien we links bijvoorbeeld een wit poeder genaamd kopersulfaat dat blauw wordt als het in contact komt met water. Rechts zien we de verbranding van thermiet dat o.a. gebruikt wordt voor het lassen van tramrails.


(Afbeelding: Benjah-bmm27; PD / CaesiumFluoride; CC BY-SA 3.0)

Natuurkunde gaat over de natuurwetten die in het universum werken. Deze wetten vertellen ons welke krachten er werken op materie en voor welke beweging deze krachten zorgen. Twee belangrijke begrippen in de natuurkunde zijn dus beweging en kracht. Bij beweging kan je bijvoorbeeld denken aan het opstijgen van een vliegtuig of het vallen van een steen. Ook de onderwerpen geluid, warmte, elektriciteit en licht behoren tot de natuurkunde. Deze fenomenen worden namelijk veroorzaakt door de bewegingen van vele miljarden kleine deeltjes. De bekendste kracht is de zwaartekracht. Andere bekende krachten zijn de elektrische en de magnetische kracht.

Hieronder zijn een aantal natuurkunde onderwerpen afgebeeld. We zien een parachutesprong (zwaartekracht), LED-lampen (licht), bliksem (elektriciteit), een foto genomen met een infraroodcamera (warmte), de trillingen van een gitaarsnaar (geluid) en een magneet waarmee ijzervijlsel wordt aangetrokken (magnetisme).


(Afbeelding: Krzysztof Wilk PD / Gerlos CC BY-SA 2.0 / Tyler Nienhouse CC BY-SA 2.0 / Alex and Jarek TuszyƄski CC BY-SA 3.0 / ... / Oguraclutch CC BY-SA 3.0)

Hoewel natuurkunde het woord "natuur" bevat, heeft het weinig te maken met het leven op aarde. Dit onderwerp wordt beschreven door de biologie.

         Leerdoelen:
  • Zorg dat je het verschil tussen natuurkunde, scheikunde en biologie begrijpt

         Opdrachten
  1. (3p) Beschrijf het verschil tussen natuurkunde, scheikunde en biologie.
  2. (1p) Een persoon onderzoekt de samenwerking tussen schimmels en planten. Is deze persoon een bioloog, een scheikundige of een natuurkundige? Leg je antwoord uit.
  3. (1p) Een persoon onderzoekt het energieverlies in hoogspanningskabels waarmee een stad van elektriciteit wordt voorzien. Is deze persoon een bioloog, een scheikundige of een natuurkundige? Leg je antwoord uit.
  4. (1p) Een persoon test verschillende stoffen om een efficiëntere batterij te produceren. Is deze persoon een bioloog, een scheikundige of een natuurkundige? Leg je antwoord uit.
  5. (3p) Maak een schets van een scheikundige, een natuurkundige en een bioloog die aan het werk is.
  6. (9p) Horen de volgende uitspraken bij de natuurkunde, de scheikunde of de biologie:
    1. In tandpasta zit fluoride.
    2. Een parachutist valt langzaam naar de aarde.
    3. Een lamp brandt als je het lichtknopje indrukt.
    4. Het menselijk lichaam bestaat uit cellen.
    5. Met behulp van zeep kunnen we vetvlekken verwijderen.
    6. In een batterij zitten bepaalde stoffen waarin energie wordt opgeslagen.
    7. Met een infraroodcamera kunnen we in het donker zien.
    8. Een druppel inkt lost op in een bak water.
    9. Een persoon onderzoekt hoe we een trein kunnen laten zweven met behulp van grote magneten.
  7. (2p) Noem twee uitvindingen waarbij de natuurkunde een belangrijke rol heeft gespeeld. Doe daarna hetzelfde voor de scheikunde.

 

§2     Grootheden en eenheden

In deze paragraaf bespreken we het verschil tussen de eigenschappen die we kunnen meten (grootheden) en de maten waarin we deze eigenschappen meten (eenheden).

In de wetenschap beschrijven we de wereld door metingen te verrichten. Alle eigenschappen die we kunnen meten noemen we grootheden. Voorbeelden van grootheden zijn lengte, oppervlakte, volume, tijd, temperatuur en snelheid. De maten waarin we deze eigenschappen meten worden eenheden genoemd. Voorbeelden van eenheden zijn meter, vierkante meter, kubieke meter, seconde, minuut, graden Celsius en meter per seconde.

GroothedenEenheden
Lengtemeter, centimeter, etc.
Oppervlaktevierkante meter, vierkante centimeter, etc.
Volumekubieke meter, liter, etc.
Massakilogram, gram, etc.
Tijdseconden, minuten, etc.
Temperatuurgraden Celsius, kelvin, etc.
Snelheidmeter per seconde, kilometer per uur, etc.

Een eenheid is gemakkelijk te herkennen doordat we het achter een getal kunnen plaatsen. We zeggen bijvoorbeeld 25 meter, maar niet 25 lengte. Meter is dus een eenheid, maar lengte niet. In het vak natuurkunde is het verplicht om bij het eindantwoord van een berekening altijd de eenheid te noteren.

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

INSTRUCTIEVIDEO:
Grootheden en eenheden
INSTRUCTIEVIDEO:
SI-eenheden

         Leerdoelen:
  • Zorg dat je weet wat grootheden en eenheden zijn en dat je ze kan onderscheiden

         Opdrachten
  1. (2p) Beschrijf het verschil tussen grootheden en eenheden.
  2. (11p) Zijn de volgende begrippen eenheden, grootheden of geen van beide?
    1. Afstand
    2. Liter
    3. Lengte
    4. Millimeter
    5. Graden Celsius
    6. Licht
    7. Kubieke meter
    8. Kilogram
    9. Meter per seconde
    10. Temperatuur
    11. Kracht

 

§3     Volume en massa

In de natuurkunde proberen we de wereld te begrijpen door metingen te doen. Twee van de belangrijkste eigenschappen die we kunnen meten zijn de massa (hoe zwaar iets is) en het volume (hoeveel ruimte iets inneemt). In deze paragraaf bespreken we de verschillende maten waarin deze eigenschappen worden gemeten.

Om de wereld te kunnen beschrijven, is het belangrijk dat we kunnen meten hoe groot voorwerpen zijn. We gebruiken hiervoor de lengte, de oppervlakte en het volume. De lengte meten we meestal in:

De oppervlakte meten we meestal in:

Het volume meten we meestal in:

In de vorige afbeelding zien we dat het volume zowel in kubieke meter als in liter weergegeven kan worden. In de afbeelding zien we dat 1 L exact hetzelfde is als 1 dm3 en dat 1 mL hetzelfde is als 1 cm3:

$$ 1 \text{ L} = 1 \text{ dm}^3$$

$$ 1 \text{ mL} = 1 \text{ cm}^3$$

         Voorbeelden

 

Vraag:

Reken 15 hectometer om naar meter.

Antwoord:

Van hectometer (hm) naar meter (m) moeten we in de onderstaande afbeelding twee stappen naar rechts doen. We doen dus twee maal keer 10:

$$ 15 \times 10 \times 10 = 1500 \text{ m} $$

 

         Voorbeelden

 

Vraag:

Reken 5 millimeter om naar meter.

Antwoord:

Van millimeter (mm) naar meter (m) moeten we in de onderstaande afbeelding drie stappen naar links doen. We moeten dus drie maal delen door 10:

$$ 5 \;/\; 10 \;/\; 10 \;/\; 10 = 0,005 \text{ m} $$

 

         Voorbeelden

 

Vraag:

Reken 3,5 kubieke decimeter om naar kubieke millimeter.

Antwoord:

Van kubieke decimeter (dm3) naar kubieke millimeter (mm3) moeten we in de onderstaande afbeelding twee stappen naar rechts doen. We doen dus twee maal keer 1000:

$$ 3,5 \times 1000 \times 1000 = 3\; 500\; 000 \text{ mm}^3 $$

 

         Voorbeelden

 

Vraag:

Een voorwerp heeft een volume van 0,035 milliliter. Geef het volume in kubieke millimeter.

Antwoord:

Milliliter (mL) is gelijk aan kubieke centimeter (cm3). Er geldt dus:

$$ 0,035 \text{ mL} = 0,035 \text{ cm}^3 $$

Dan gaan we van kubieke centimeter (cm3) naar kubieke millimeter (mm3). In dat geval moeten we in de onderstaande afbeelding één stap naar rechts doen. We doen dus één maal keer 1000:

$$ 0,035 \times 1000 = 35 \text{ mm}^3 $$

 

Om de wereld te kunnen beschrijven, is het ook belangrijk dat we kunnen meten hoe zwaar voorwerpen zijn. Hiervoor wordt het begrip massa gebruikt. Voor de massa gebruiken we dezelfde voorvoegsels als bij de lengte:

Normaal gesproken gebruiken we echter alleen de milligram, de gram en de kilogram:

In het dagelijks leven wordt voor de massa ook wel het woord "gewicht" gebruikt. Dit is echter onjuist.

Het is belangrijk om het begrip volume en het begrip massa goed uit elkaar te houden. Het volume beschrijft hoeveel ruimte een voorwerp inneemt. De massa beschrijft hoe zwaar een voorwerp is. In de onderstaande afbeelding wordt het verschil duidelijk. Het stuk piepschuim heeft het grootste volume, omdat het meer ruimte inneemt. De kogel heeft de grootste massa, omdat die zwaarder is.

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

INSTRUCTIEVIDEO:
Volume en massa

         Leerdoelen:
  • Zorg dat je het verschil tussen massa en volume begrijpt
  • Zorg dat je de maten voor lengte, oppervlakte, volume en massa kan omschrijven
  • Zorg dat je weet dat 1 dm3 = 1 L en 1 cm3 = 1 mL

         Opdrachten
  1. (2p) We vergelijken een groot blok piepschuim met een kleine loden kogel. Leg uit welk voorwerp de grootste massa heeft en welke het grootste volume.
  2. (2p) Verbeter de twee fouten in deze uitspraak: "Het gewicht van de man is 75 kilo".
  3. (1p) Vul de volgende tabel aan:
    Grootheid Eenheid
    Massa kilogram
    Volume kubieke meter
    ... liter
  4. (6p) Schrijf de volgende meetwaarden om:
    1. 10 m = ... cm
    2. 35 mm = ... cm
    3. 8 cm = ... m
    4. 250 km = ... m
    5. 1500 hm = ... km
    6. 1 km = ... cm
  5. (6p) Schrijf de volgende meetwaarden om:
    1. 35 m2 = ... cm2
    2. 8,22 mm2 = ... m2
    3. 100 hm2 = ... m2
    4. 20 cm2 = ... dm2
    5. 0,014 cm2 = ... mm2
    6. 1 km2 = ... m2
  6. (7p) Schrijf de volgende meetwaarden om:
    1. 0,05 m3 = ... mm 3
    2. 10 cm3 = ... dm3
    3. 654 m3 = ... hm3
    4. 2,231 L = ... mL
    5. 56,2 mL = ... L
    6. 30 cL = ... L
    7. 2500 dl = ...mL
  7. (1p) Schrijf 25 mL om naar kubieke centimeter.
  8. (1p) Schrijf 0,05 dm3 om naar liter.
  9. (7p) Schrijf de volgende meetwaarden om:
    1. 5600 cm3 = ... L
    2. 66,08 mL = ... dm3
    3. 0,0765 L = ... cm3
    4. 1,54 dm3 = ... mL
    5. 150 mm3 = ... L
    6. 0,23 m3 = ... L
    7. 0,9 L = ... cm3
  10. (7p) Schrijf de volgende meetwaarden om:
    1. 150 kg = ... g
    2. 0,03kg = ... g
    3. 23 000 g = ... kg
    4. 0,025 g = ... mg
    5. 1 250 mg = ... g
    6. 0,25 kg = ... mg
    7. 0,023 kg = ...mg
  11. (2p) In een pan van 3 L schenk je 750 mL water. Bereken hoeveel water er nog bij kan voordat de pan vol is.
  12. (2p) Je hebt een 1,5 literfles cola. Bereken hoeveel bekers van 250 cm3 je hiermee kan vullen.

 

§4     Het volume bepalen

In deze paragraaf bespreken we twee manieren om het volume van een voorwerp te achterhalen.

Als een voorwerp de vorm heeft van een balk (zie de onderstaande afbeelding), dan kunnen we het volume van dit voorwerp als volgt berekenen:

$$ \text{volume } = \text{ lengte } \times \text{ breedte } \times \text{ hoogte }$$
Volume Kubieke meter (m3)
Lengte meter (m)
Breedte meter (m)
Hoogte meter (m)

 

Het volume van de balk in de onderstaande afbeelding is bijvoorbeeld:

$$ \text{Volume} = 5,0 \times 2,0 \times 1,5 = 15 \text{ m}^3$$

Als een voorwerp een ingewikkelde vorm heeft, dan kunnen we het volume vaak niet met een formule bepalen. In dat geval gebruiken we een slim experiment genaamd de onderdompelmethode. Stel we willen het volume van een steentje bepalen, dan kunnen we het steentje in een maatcilinder met water doen en kijken hoeveel het water stijgt. In het onderstaande voorbeeld is het water bijvoorbeeld gestegen van 15 mL naar 24 mL. Het water is dus 24 - 15 = 9 mL gestegen en het volume van de steen is dus ook 9 mL.

Merk op dat aan de wanden van de maatcilinder het water iets omhoogtrekt. Dit is hieronder duidelijk te zien. Voor het aflezen van de maatcilinder kijk je altijd naar de stand van de vloeistof in het midden. In dit geval lezen we de maatcilinder af op 21,7 mL.


(Afbeelding: PRHaney; CC BY-SA 3.0)

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

INSTRUCTIEVIDEO:
Het volume bepalen

         Leerdoelen:
  • Zorg dat je het volume van een balk kan berekenen
  • Zorg dat je het volume van een voorwerp kan bepalen met de onderdompelmethode
  • Zorg dat je een maatcilinder correct in het midden kan aflezen

         Opdrachten
  1. (2p) Bereken het volume van de onderstaande houten plank.

  2. (2p) Een stuk hout heeft een lengte van 4 cm, een breedte van 6 cm en een hoogte van 5 cm. Bereken het volume van het stuk hout.
  3. (3p) Een plank hout heeft een lengte van 4,5 meter, een breedte van 2 dm en een hoogte van 3 cm. Bereken het volume van de plank.
  4. (3p) Een zwembad wordt tot de rand gevuld met 150 000 liter water. De lengte van het zwembad is 10,00 meter en de breedte is 5,00 m. Bereken hoe diep het zwembad is.
  5. In de onderstaande drie maatcilinders zit een verschillende hoeveelheid water.

    1. (3p) Lees alle drie de maatcilinders correct af.
    2. (1p) Schrijf alle drie de antwoorden om naar kubieke centimeters.
  6. (2p) Lees de volgende twee maatcilinders af. In beide gevallen zijn de eenheden gegeven in milliliters.

  7. (1p) Geef het volume van het water in de volgende meetcilinder:

    (Bron: Examen VMBO-T, 2022-1)
  8. (2p) Bepaal het volume van de steen in de volgende afbeelding. Geef je antwoord in kubieke centimeters.

 

§5     Dichtheid

In deze paragraaf introduceren we het belangrijke begrip dichtheid. Met de dichtheid kunnen we aanduiden hoe de massa van verschillende stoffen van elkaar verschilt.

Niet alle stoffen zijn even zwaar. Een kubieke centimeter goud is bijvoorbeeld zwaarder dan een kubieke centimeter aluminium. We beschrijven dit verschil met het begrip dichtheid.

Een kubieke centimeter goud heeft bijvoorbeeld altijd een massa van 19,3 gram. We zeggen daarom dat de dichtheid van goud gelijk is aan 19,3 g/cm3. Aluminium heeft altijd een dichtheid van 2,7 g/cm3. Aluminium heeft dus een kleinere dichtheid dan goud. Als we in het dagelijks leven zeggen dat goud "zwaarder" is dan aluminium, dan bedoelen we eigenlijk dat de dichtheid van goud groter is dan van aluminium.

Hieronder zien we links een blokje hout met een massa van 10 gram en een volume van 8,0 cm3. Om de dichtheid van dit hout te bepalen, willen we de massa van 1 cm3 hout te weten komen. De dichtheid is in dit geval dus gelijk aan:

$$ \frac{10 \text{ gram}}{8,0\text{ cm}^3} = 1,3 \text{ g/cm}^3 $$

Om deze dichtheid te berekenen, hebben we de massa van het blokje gedeeld door het volume. Er geldt dus:

$$ \text{dichtheid} = \frac{\text{massa}}{\text{volume}}$$
massa kilogram (kg)
volume kubieke meter (m3)
dichtheid
(spreek uit als "rho")
kilogram per kubieke meter (kg/m3)

 

Hieronder zie je een tabel met de dichtheden van een aantal stoffen. Je vindt een uitgebreidere versie van deze tabel terug achter in het boek. Je vindt een uitgebreidere versie van deze tabel in het tabellenboek achter in het boek of op de website.

Stof

Dichtheid (g/cm3)

Koper

8,96

IJzer

7,87

Lood

11,35

aluminium

2,70

Kwik

13,5

Zilver

10,50

Goud

19,30

vloeibaar water

1,00

IJs

0,92

vurenhout

0,58

Glas

2,60

Lucht

1,293 kg/m3

         Stappenplan dichtheid

 

Vraag:

Een leerling vindt een muntstuk met een volume van 1,554 cm3 en een massa van 30 gram. Laat met een berekening zien waar het muntstuk van gemaakt is.

Antwoord:

Stap 1:

Schrijf de gegevens uit de vraag op:

massa = 30 g
volume = 1,554 cm3
dichtheid = ?

Stap 2:

Schrijf de gegevens zo nodig om naar gram en kubieke centimeter:

In dit geval staan de gegevens al in gram en kubieke centimeter, dus deze stap kunnen we overslaan.

Stap 3:

Noteer de formule en vul deze in:

$$ \text{dichtheid} = \frac{\text{massa}}{\text{volume}}$$ $$ \text{dichtheid} = \frac{30}{1,554} = 19,3 \text{ g/cm}^3 $$

Stap 4:

Check of de eenheid achter het antwoord staat. In dit geval g/cm3

Stap 5:

Zoek met de tabel op welke stof bij deze dichtheid hoort.

Bij 1,93 g/cm3 hoort de stof goud (ga dit zelf na!).

 

         Stappenplan dichtheid

 

Vraag:

Een metalen object met een volume van 1,20 kubieke decimeter heeft een massa van 9,44 kg. Bepaal van welk soort metaal het voorwerp gemaakt is.

Antwoord:

Stap 1:

Schrijf de gegevens uit de vraag op:

massa = 9,44 kg
volume = 1,20 dm3
dichtheid = ?

Stap 2:

Schrijf de gegevens om naar gram en kubieke centimeter:

massa = 9,44 kg = 9440 g
volume = 1,20 dm3 = 1200 cm3

Stap 3:

Noteer de formule en vul deze in:

$$ \text{dichtheid} = \frac{\text{massa}}{\text{volume}}$$ $$ \text{dichtheid} = \frac{9440}{1200} = 7,81 \text{ g/cm}^3 $$

Stap 4:

Check of de eenheid achter het antwoord staat. In dit geval g/cm3

Stap 5:

Zoek met de tabel op welke stof bij deze dichtheid hoort.

Bij 7,87 g/cm3 hoort het metaal ijzer (ga dit na!).

 

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

INSTRUCTIEVIDEO:
Dichtheid

         Leerdoelen:
  • Zorg dat je kan reken met de formule dichtheid = massa / volume.
  • Zorg dat je met het begrip dichtheid kan redeneren. Weet o.a. dat materialen van dezelfde stof altijd dezelfde dichtheid hebben.
  • Zorg dat je de dichtheid van verschillende stoffen kan vinden in BINAS.

         Opdrachten
  1. (1p) De dichtheid van aluminium is 2,7 g/cm3. Leg uit wat dit betekent.
  2. Hieronder zie je drie blokjes die uit hetzelfde stuk hout zijn gesneden.

    1. (1p) Welke blokjes hebben dezelfde massa? Leg je antwoord uit.
    2. (1p) Welke blokjes hebben hetzelfde volume? Leg je antwoord uit.
    3. (1p) Welke blokjes hebben dezelfde dichtheid? Leg je antwoord uit.
  3. (3p) Een leerling wil de dichtheid van een klein voorwerp bepalen. Ze bepaalt eerst de massa met een _________ en het volume met een _________. Daarna berekent de leerling de dichtheid met de formule _________.
  4. (9p) Bereken in de volgende drie gevallen de dichtheid:

    Massa

    Volume

    Dichtheid

    2,3 g      

    0,8 cm3 

    ...... g/cm3

    2000 g

    0,550 dm3

    ...... g/cm3

    2500 mg

    665 mL

    ...... g/cm3

  5. (3p) Een voorwerp heeft een massa van 200 gram en een volume van 76,9 cm3. Van welke stof is dit voorwerp gemaakt?
  6. (3p) Een leerling vindt een munt met een volume van 1,45 cm3 en een massa van 15,0 g. Laat met een berekening zien of de munt van zuiver zilver gemaakt is.
  7. (5p) Een vat bevat 60 dm3 van een onbekende vloeistof. De massa van de vloeistof is 48 kg. Bereken dichtheid en noteer welke vloeistof er in dit vat zit (let op: de dichtheid van deze vloeistof staat niet in de tabel in de paragraaf maar wel in BINAS).
  8. (4p) Een plank heeft een massa van 1,0 kg. De plank is 2,0 cm dik, 10 cm breed en 80 cm lang. Bereken de dichtheid van de plank in kilogram per kubieke meter.
  9. (3p) In de onderstaande afbeelding wordt een steentje ondergedompeld. Het steentje heeft een massa van 15 gram. Bepaal de dichtheid.

  10. Archimedes werd door een koning gevraagd om uit te zoeken of zijn kroon van puur goud gemaakt was. Niemand had in zijn tijd echter nog bedacht hoe je dit kon doen.
    1. (3p) Archimedes bedacht de oplossing voor het probleem toen hij in een vol bad ging zitten en het water over de rand stroomde. Hij sprong toen uit zijn bad, rende naakt door de straten en riep "eureka!" ("ik heb het gevonden!"). Bedenk met behulp van de theorie uit de paragraaf hoe Archimedes met zijn bad (en met een weegschaal) kon aantonen of de kroon van puur goud gemaakt was.
    2. (3p) Met een weegschaal vond hij dat de kroon een massa van 0,80 kg had. Met een bak water vond hij dat de kroon een volume had van 420 mL. Bereken of de kroon van puur goud gemaakt was.

 

§6     Drijven of zinken

In deze paragraaf gaan we met de dichtheid uitrekenen of voorwerpen drijven of zinken.

Met de dichtheid kunnen we o.a. voorspellen of een voorwerp zal drijven of zinken. Als een voorwerp een grotere dichtheid heeft dan de omringende vloeistof, dan zal het voorwerp zinken. Als het een lagere dichtheid heeft, dan blijft het drijven.

Piepschuim heeft bijvoorbeeld een lagere dichtheid dan water en blijft dus drijven. Dit geldt zelfs als je een gigantisch stuk piepschuim van duizenden kilogram in het water zou leggen. Het omgekeerde is waar voor een stukje metaal. Metaal heeft een grotere dichtheid en als gevolg daarvan zal zelfs het lichtste stukje metaal zinken.

         Voorbeeld

 

Vraag:

Een blikje cola heeft een massa van 384 gram en een volume van 380 cm3. Een blikje cola light heeft een massa van 370 gram en hetzelfde volume. Ga met een berekening na of de blikjes drijven of zinken.

Antwoord:

Voor het blikje cola geldt:

massa = 384 g
volume = 380 cm3

De dichtheid berekenen we als volgt:

$$ \text{dichtheid} = \frac{\text{massa}}{\text{volume}}$$ $$ \text{dichtheid} = \frac{384}{380} = 1,01 \text{ g/cm}^3 $$

Voor het blikje cola-light geldt:

massa = 370 g
volume = 380 cm3

De dichtheid berekenen we als volgt:

$$ \text{dichtheid} = \frac{\text{massa}}{\text{volume}}$$ $$ \text{dichtheid} = \frac{370}{380} = 0,97 \text{ g/cm}^3 $$

In de tabel zien we dat de dichtheid van water gelijk is aan 1,00 g/cm3. Het blikje cola heeft een grotere dichtheid en zal dus zinken. Het blikje cola-light heeft een lagere dichtheid en zal dus drijven.

 

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

↓ VMBO VERSIES van deze VIDEOS komen binnenkort online!

INSTRUCTIEVIDEO:
Drijven en zinken

         Leerdoelen:
  • Zorg dat je kan beredeneren of voorwerpen drijven of zinken aan de hand van de dichtheid

         Opdrachten
  1. (1p) In de onderstaande afbeelding zien we een Engelse munt (een pound) die voor het grootste deel gemaakt is van koper. De munt blijft drijven op het vloeibare metaal kwik. Wat zegt dit over de dichtheden van koper en kwik? Ga na of je antwoord klopt met behulp van het tabellenboek.


    (Afbeelding: Alby; CC BY-SA 3.0)

  2. (2p) Je gooit een ijsblokje eerst in een glas water en dan in een glas pure alcohol. Ga voor beide gevallen na of het ijsblokje blijft drijven. Leg uit hoe je op je antwoord komt.
  3. Een voorwerp heeft een volume van 350 mL en een massa van 340 gram.
    1. (4p) Bereken of dit voorwerp wel of niet drijft in water.
    2. (2p) Bereken of dit voorwerp wel of niet drijft in zonnebloemolie (0,92 g/cm3).
  4. (4p) Een plank heeft een massa van 10 kg. De plank is 2 cm dik, 10 cm breed en 80 cm lang. Bereken of de plank blijft drijven.
  5. (LASTIG!) In een experiment in de klas wordt de dichtheid van een leerling bepaald. Eerst wordt met een weegschaal de massa van de leerling bepaald. De leerling blijkt 45 kg te wegen. Dan wordt er een bak met water de klas in gereden. De bak heeft een lengte van 1,0 m en een breedte van 60 cm. Het water komt 40 cm hoog. De leerling stapt nu in de bak water en gaat helemaal kopje onder. Als de leerling heeft uitgeademd wordt de nieuwe hoogte van het water gemeten. Dit blijkt 47,3 cm te zijn.
    1. (2p) Bereken het volume van het water met en zonder leerling.
    2. (3p) Bereken de dichtheid van de leerling in kg/m3.
    3. (1p) Ga ook na of de leerling drijft of zinkt. De dichtheid van water is 1000 kg/m3.